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Abstract 

The Fourier transform of a skeletal delta function 
that characterizes the most striking features of experi- 
mental quasi-crystal diffraction patterns is evaluated. 
The result plays a role analogous to the Poisson 
summation formula for periodic delta functions that 
underlie classical crystallography. The real-space dis- 
tribution can be interpreted in terms of a backbone 
comprising a system of intersecting equiangular 
spirals into which are inscribed (self-similar) 
gnomons of isosceles triangles with length-to-base 
ratio the golden mean r. In addition to the vertices 
of these triangles, there is an infinite number of other 
points that may tile space in two or three dimensions. 
Other mathematical formulae of relevance are briefly 
discussed. 

I. Introduction 

This paper attempts to draw together some observa- 
tions that may have a bearing on the problem of 
structure in quasi-crystals. So far the mathematical 
tools that have been brought to bear, be they 
geometric packing (Kowalewski, 1938; Penrose, 
1974), group theory or use of projections from hyper- 
Euclidean spaces to three dimensions (Gratias & 
Mechel, 1986; Jaric, 1988, 1989), are unquestionably 
deep, and some real progress has been made in under- 
standing. Some real-space models that must capture 
at least the main features of particular systems have 
been constructed (Lidin, Andersson, Bovin, Maim & 
Terasaki, 1989). 

Despite these advances, the real problem is to relate 
observed diffraction patterns with nonstandard crys- 
tallographic symmetries to the atomic distributions 
that give rise to them. This problem remains. This 
can be seen if we recall that the interpretation of 
diffraction experiments on translationally invariant 
crystals depends ultimately on the existence of the 
Poisson-summation formula. This relation asserts that 
the Fourier transform of a periodic delta function is 
itself a periodic delta function, whence the use of 
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reciprocal space. Explicitly, we have the identity 
c o  

f(x)=-- Z iS(x-m) 

oc, 

= ~ exp (27rimx) 
-- or-,, 

c o  

= 1 + 2  ~ cos(2rrmx) (1) 
m = !  

so that the Fourier transform of a translationally 
invariant array of atoms represented by the periodic 
delta function (1) is 

c o  oc~ 

f ( k ) =  J dxexp( -27 r ikx )Y~  iS(x-m) 
- o o  - - c o  

o c  

= ~ exp (-27rikm) 
- c o  

o o  

= Y. 3 ( k -m) .  (2) 

The determination of the crystal structure is then 
immediate, since any diffraction pattern will be 
related to the product of an appropriate combination 
of three such delta functions with atomic form factors. 
Inversion is then possible via the convolution 
theorem for Fourier transforms if the problem of the 
undetermined phase can be solved. No such 
analogous identity on which to base experiments 
appears to have been written down for quasi-crystal- 
line diffraction, where successive values exhibit 
geometric ratios instead of properties characteristic 
of translational invariance. It is our purpose to give 
such a relation and to quote others that relate to the 
general problem. 

2. Quasi-crystal spectra and self-similarity 

The classical observed quasi-crystal spectrum is 
shown in Fig. 1. This illustrates schematically a two- 
dimensional section in reciprocal space of a diffrac- 
tion pattern. The fivefold symmetry is exact and 
typically six indices instead of three are required to 
index each point, with the choice of origin arbitrary 
and, for assignment of indices, ambiguous. The 
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features on which we wish to focus are as follows. 
(i) Along a given fivefold axis the spacing of the 

main peaks is in the ratio k, /k ,+,  = 1/r where r is 
the golden mean, (51/2+ 1)/2. 

(ii) Between each two such peaks are a sequence 
of further peaks of lower intensity that all lie on an 
infinite set of coincident interpenetrating Fibonacci 
sequences of arbitrary origin [they may be described 
through a projection from Euclidean two-space onto 
a strip bounded by two lines at an angle of 7r/5 to 
the x axis]. 

(iii) Surrounding each fivefold axis are other 
sequences of lesser intensity that can be connected 
to their neighbours to form regular self-similar pen- 
tagonal figures (icosahedra in three dimensions). 

(iv) Along the fivefold axes the density of points 
as one approaches any chosen origin becomes infinite. 

(v) Increasing time of exposure results in the 
appearance of more and more points throughout 
reciprocal space in an eventually dense space-filling 
array. All points satisfy the same symmetry and self- 
similarity properties. 

(vi) Through a set of initial points on adjoining 
fivefold axes can be drawn a set of 20 intersecting 
equiangular spirals emanating from any chosen origin 
as illustrated. 

The distinction between features (i) and (ii) above 
can be disputed: sometimes what we have identified 
(through their intensity) as 'main'  peaks can be out 
of the main sequence and belong to the subsequences 
(ii). Nonetheless, we can still ask the questions: What 
would the Fourier transform of such a system be? 
Does it even exist, and if so how can it be interpreted? 
Is it unique? To that end we focus first on property 
(i) of the spectrum and take as a representation of 
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Fig. 1. Experimental electron diffractogram of an icosahedral 
quasi-crystal. (Picture courtesy J.-O. Maim.) 

the main structure of the distribution the expression 

f ( k )  = Ik -JE 8( k l -  ~'- ' ) ,  

j = 0, 1, 2 in 1, 2, 3 dimensions. (3) 

The postulated phase-space factor Ik -~ will be seen 
later to be necessary for reasons that will become 
clear, and this 'skeletal' delta function exhibits 
spacing of the main points along a given fivefold axis. 
We ask [analogously to (1) and (2)]" Is the Fourier 
transform of such a function a meaningful object and, 
if so, what would it look like? We postulate that the 
relation between the diffraction pattern of a quasi- 
crystal and its atomic structure is basically the same 
as that for an ordinary crystal and, further, that this 
generalization of the Fourier transform be performed 
by summation analogous to that of a periodic func- 
tion. The two-dimensional transform along a par- 
ticular axis, say 0 = zr/5, along the same axis in real 
(r) space will then be 

c o  

f(Irl, 0= rr/5)= f exp (-27rikr)(k/kl) dk 
- - o o  

o o  

x E a ( I k l - ' , - " )  
- - oo  

= ~ cos [27rr exp (m In z- ' ) ] .  (4) 
r n = o o  

This formal expression is what we have to deal with. 
It exists, if at all, only in the sense of generalized 
function theory, but so too do (1) and (2). It is not 
a Fourier series but, as we shall see, carries a good 
deal of information. 

To show this, we consider a related function defined 
by 

g(x)= ~ [ e x p ( - x e x p  m ) - e x p ( - e x p  m)]. (5) 
m ~ - - o o  

Now, g(x) so defined is a uniformly convergent sum, 
so that g(x) is everywhere continuous in (0, oo). It 
satisfies the functional equation 

g(ex) = g(x)+ g(e), (6) 

where e is the transcendental number. This is the 
same functional equation as that for In x, and both 
g(1) and In (1) are equal to zero. It is natural to ask 
if g(x) is in fact identical to In x, at least up to a 
constant factor. The derivations in Appendices A and 
B show that this is not the case. Explicitly, g(x) can 
be cast in the form 

o o  

g ( x ) = - l n x +  ~, 
t l ~ - - o o  

£(27rin)(x -2~'"- 1), n # 0 .  

(7) 
Here F(z) is the gamma function. We see that g(x) 
does coincide with - In  x at isolated points (where 
x - 2 " i " - I  =0 ,  i.e. for all integers n) at x = e x p  m, 
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where m = 0, 1, 2, 3 , . . . .  In between these points g(x)  
wobbles about the value of the function - In  x in an 
apparently chaotic manner. A similar problem led 
Ramanujan to his famous fallacious proof (Hardy, 
1940) of the prime-number theorem. He forgot the 
wobbles. So the behaviour of the function g(x),  
related to our skeletal delta function is much deeper 
than it might appear at first sight. The wobbly part 
[g(x)  + In x] is self-similar, i.e. it scales at every level, 
but it is not fractal in the sense of Mandelbrot because 
it is everywhere differentiable infinitely many times. 
A fractal is nowhere differentiable, but everywhere 
continuous. 

An analogous but more complicated problem than 
this one has been encountered in the context of 
Fourier analysis of random walks with self-similar 
clusters (Hughes, Montroll & Shlesinger, 1981, 1982, 
1983). Analogies between this random-walk Fourier- 
analysis problem and real-space renormalization have 
also been explored (Shlesinger & Hughes, 1981). We 
remark in passing that computation shows that, in 
addition to the points x = exp m, there exists another 
infinite set of real zeros of g(x )+ In x. Further, if we 
write x = e x p  t and g ( x ) = - 1 / N ( t ) ,  we can convert 
the nonlinear functional equation (6) into the non- 
linear functional equation 

N ( t +  1)= N ( t ) / [ 1 - g ( e ) N ( t ) ] .  (8) 

Our analysis has therefore produced a solution to the 
nonlinear difference equation (6), which, although 
simple for integer of t, behaves in a somewhat 
irregular way for intermediate values. 

3. The skeletal Fourier transform and 
equiangular spirals 

The self-similar oscillations within oscillations 
exhibited by g(x) are computationally extremely 
small in magnitude and appear to be of at most 
academic interest. However, this is not the case for 
our pseudo-quasi-crystal spectrum (4). Keeping the 
behaviour of g(x) in mind we will consider the 
modified form 

f( l r l ,  0 = z r / 5 ) =  
o o  

Y {cos [2rrr exp (m In r--I)] 
m = - - o o  

- c o s  [2rr exp (m In 7-1)]}. (9) 

At first sight the choice of this normalization by 
subtracting the constant sum seems nothing more 
than a mathematical trick to guarantee self-similarity. 
But through this choice we are operating on the 
skeletal delta function with the difference of two 
operators 

d2k [exp (27rikr)- exp (27rilr)]. 

We can then interpret the resulting expression (9) as 
the difference or excess in density distribution over 

that existing for any point specified for a particular 
k vector and taken to have unit magnitude. Any 
multiple of r will do just as well. If these arguments 
are accepted, then (5) is nothing more than a variant 
of g(x),  except that the argument is now purely 
imaginary and the scaling parameter is r not e. 

The sum involved in (9) is not formally convergent, 
but neither is a periodic delta function, and we will 
persist on the assumption that it will emerge by a 
formal analysis through, for example, convolution 
with an atomic form factor that will yield convergence 
in practice. 

Granted these assumptions, the analysis can pro- 
ceed exactly as for g(x) [see Appendix A]. The result, 
corresponding to (4), is 

f( l r l ,  0 =  rr/5) = ( l / In  r -1) 

x In r -  2 cosh (2rr2n/ln r -1) 
n ~ - o o  

x F(2nTri/ln r-l)[(2zrr) -2"~i'/l" ~'-' 

- (2'n') -2~i"/ln ~" -'] } .  (10) 

The differences from previously are that (i) f(Irl) 
scales with r instead of e; f ( r x )  = f ( x )  +f ( r )  and (ii) 
the self-similar wobbles are vastly enhanced because 
of the cosh function in the infinite sum. 

The sum converges conditionally and is real, as 
can be seen if the nth term T, is written asymptoti- 
cally. Thus 

T,, = n-1/2{sin [(2rrn/ln r - l ) ( ln  2 r r x -  In 2rr)/2] 

x sin [~,  - (2rrn/ln r - l ) ( ln  2rrx + In 2rr)/2]} 

(11) 
where 

~, = 0,(In 0 , -  1 ) - z r / 4 - ( 1 / 1 2  0, + 1/360 03 ,+ . . . ) ;  

0, = 121rn/ln r-ll .  (12) 

The oscillatory part of (10), which corresponds to the 
'wobbly'  part of g(x), vanishes identically at multiples 
of In r. 

The equiangular spiral as a fingerprint 

At particular values of Irl we can extract some sense 
from (10) if we set 

In r/ln r -i = 0/ (37r /5) .  (13) 

This is precisely the equation of the equiangular spiral 
into which, following Thompson (1942), one can 
inscribe in succession a set of gnomons of isosceles 
triangles, the ratio of side to base being r. The distance 
scale is set by our choice of normalization (see Fig. 2). 
The appearance of the equiangular spiral is called 
the trace, the shape, the ghost or signature of our 
skeletal delta function. 
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One can speculate that, if indeed the phase-space 
factor is a requirement of the distribution that reflects 
the self-similarity characteristic of quasi-crystals, all 
such spectra will be dominated in their intensities by 
such a term and all appear very similar. That seems 
to be the case. Those analyses attempted so far do 
produce R values that imply astonishingly good fits 
(Elswijk, De Hosson, van Smaalen & de Boer, 1988). 
This makes sense if the atomic-form-factor contribu- 
tions are less important than ordinarily, as they would 
be if masked by those from the phase-space factor. 
Without this factor, the self-similarity is lost (see 
Appendix A). 

However we seem to have recovered much more 
positional information. In addition, we now generally 
set 

f(Irl, 0 =  rr/5) = O/ (3r r /5 )  = 0 (14) 

and recall that according to prescription the zeros of 
this equation are to be interpreted as points in real 
space. Because of the oscillations in (10) there will 
be in addition to the apexes of the ever-expanding 
triangles set by (13) an infinity of real-space points 
that also satisfy self-similarity and fill up unoccupied 

8 

C 

Fig. 2. Succession of gnomons of isoceles triangles with side-to- 
base ratio r : l  (after Thompson, 1942). The apices or other 
corresponding points of all these triangles are self-similar and 
have their Iocis on an equiangular spiral at the trivial zeros of  
the excess-density function (13). If the centre of the spiral is 
taken as the origin, O, and OA as the x axis, the coordinates of  
successive apices are [Yo=(r2+l)  I/2] A = ( I ,  YoX0); B =  
½r- ' ( - I / r ,  Y0); C =½r-2[ - r ,  Yo / ( - r ) ] ;  D =½r-3[ 7, Yo/(-r)]; 
E=½T-4(I/r, Yo) etc. The ratio of  the sides of successive 
triangles is A B / B C  = B C / C D  = C D / D E  = . . .  = r. The 
equation of the eLpiral ~ In r L.~.In r-tO/(3vr/5). The successive 
angles AOB, BOC, COD, DOA are 3~r/5, 3rr/5, 3vr/5, rr/5 and 
the lengths AO, BO, CO, DO are in the ratio l : r - l :  r2: r 3 . . . .  
The equiangular spiral coincides with the inverse Fourier trans- 
form, rather than the free apices of  the triangles inscribed, if the 
point A is chosen to coincide with the vector ] of (9) and P is 
chosen to be the origin for the skeletal delta function along 
a particular observed fivefold axis. However, the points 
A, B, C, D, E , . . .  determine only the basic shape of the inverse 
position space transform. The complete expression (9) has an 
infinite number of other zeros at intermediate points that satisfy 
the condition f(r, rr/5) = O/(37r/5)  and that are also positions 
in the skeletal quasi-crystal lattice. 

regions between the isolated triangular apexes. The 
degree to which they will do so presumably depends 
on the minimum distance scale one is prepared to 
accommodate. 

4. Angular dependence and three-dimensional 
skeleton spectra 

Our discussion so far has focused on a particular 
angle in space. In general, for the full fivefold two- 
dimensional skeleton spectrum of Fig. 1 we should 
write 

10 oo 

f(k)=(1/[kl) Y a(O-jrr/5) Y~ a(kl-r-m). 
j= l  m=-oo 

(15) 

This would lead to a sum of intersecting equiangular 
spirals as the trace of the quasi-crystal distribution. 
Thus we can take 

f ( r )  = 5 exp (-2rrikr) d2kf(k) 

10 oo 
= ~ Y~ {exp[-2rrircos(O-jrr/5) 

j= l  m=-oo 

x exp (m In r ) ] - e x p  [ - 2 r r i  cos ( 0 - j v r / 5 )  

× exp (rn In r)]}. (16) 

The leading term in f(r),  i.e. omitting the oscillations, 
is similar to (13), 

10 
f ( r ) =  ~ [lnlrcos(O-jrr/5) l] / lnr  -~, (17) 

j= l  

which produces ten intersecting spirals as the basic 
skeleton. The independence of origin and self-simi- 
larity and rotational invariance seems to be guaran- 
teed as can be seen in § 7. 

In three dimensions the phase-space factor to pre- 
serve self-similarity would be 1/Ikl  = instead of 1 / k  I 
and in both two and three dimensions additional 
points of the structure that fill in the pattern beyond 
the intersecting triangular gnomons are provided by 
the oscillatory part of the whole function. In three 
dimensions, we can expect that the overall structure 
predicted will be made up of intersecting equiangular 
helices of geometrically increasing pitch. 

5. Decorations of the skeleton 

In our argument so far we have ignored a most 
important feature of real spectra, namely point (ii) 
of § 2. Between each two successive values of the 
argument of our skeletal delta function in, say, the 
interval of k space [ r - " ,  r-~"+~)], cf. (3), lie a further 
sequence of points. Along any given line these points 
form a whole additional interpenetrating and inter- 
locking set of Fibonacci sequences. We have sup- 
posed these to be less important in arriving at a picture 
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of the real-space Fourier transform than the usually 
more intense peaks of the skeletal k space representa- 
tion. It is possible to build an approximate representa- 
tion of this reality. However, we do not intend to 
pursue this development further until the distribution 
of (14) is explored further computationally or experi- 
mentally. Another kind of decoration that is amenable 
to treatment is one in which the gaps between the 
skeleton spirals are decorated with a random 
sequence of points in the spectrum in each interval 
(r-m,r -(m+t~) and assigned statistical or equal 
weights. The analysis required needs to invoke only 
the known properties of Pearson's random walk, but 
will not be pursued further here, although clearly 
such an analysis can be used to construct a theory of 
liquids. 

6. Extensions of Poisson's formula 

There exists another class of relations analogous to 
the Poisson formula, which may proCide some 
insights into other incommensurate phases. This class 
of formulae has been derived elsewhere (Ninham, 
Hughes, Frankel & Glasser, 1992; Ninham, 1991). 
Here we omit the derivations and simply quote the 
result: 

oo 

Y~ I~(m)l cos m x  
m = l  

=½ 2 ~x(m) 2 (2rr/m2)~(x-2~'n/m2)-I  • 
t r t = l  n= - -oo  

(18) 

In this equat ion/x(m) is the M6bius function defined 
by 

/x(m) = { i  

i f m = l  

if m is a product of r distinct primes 

otherwise. 
(19) 

This formula relates a sum of cosines, i.e. the Fourier 
transform of a set of delta functions, to a sum of delta 
functions requiring two indices. The distribution that 
gives rise to this array is one in which some of the 
integers are missing - those for which [/z(m)[ = 0 - in 
an apparently random but completely deterministic 
manner. Thus on a one-dimensional array of atoms 
labelled by the integers, the missing lattice points 
from 1 to 50 are 4, 8, 9, 16, 18, 20, 24, 25, 27, 28, 32, 
36, 40, 44, 45, 48, 49 and 50. (The frequency of missing 
points diminishes with increasing number.) The 
Fourier transform of this distribution requires two 
indices for its specification and thus there is no 
arbitrariness therein. The product of three such 
pseudo-periodic or aperiodic delta functions, in 
(x, y, z) directions, is a completely determined array 
in three dimensions that requires six indices to label 
its also completely determined Fourier transform. 

We hope to explore such distributions in a later 
publication. 

7. Relation to Penrose tilings 

The Penrose tiling problem seems first to have been 
touched upon by Kepler (see Kowalewski, 1938). It 
is clear that our approach must in some ways parallel 
that of the Penrose tiling, and it is indeed not surpris- 
ing to find that the Penrose tiling can be generated 
from Thompson's  triangular tiling of the equiangular 
spiral. We start with the observation that the 
gnomonic isoceles triangles of Thompson (see Fig. 2) 
are identical to those used by Robinson (1975; see 
Grfinbaum & Shephard, 1987) to analyse the Penrose 
tiles. Since any one of the aperiodic pentagonal 
Penrose tilings can be decomposed into these 
triangles, it is evident that the Thompson construction 
can be used to generate a Penrose-type tiling. The 
single equiangular spiral 

In r/ln ~" = ~9/(3Tr/5) 

is related to the set of spirals 

In r/ln ~'= ( O +  a ) / ( T r / 5 ) a  

{0, 27r/5, 47r/5,617"/5, 8rr/5}, 

as is shown in Fig. 3. The intersections of the latter 
set (together with the set of points obtained from the 
intersections by an inversion in the origin) form the 
base for a Penrose-type tiling. Note how the original 
gnomons stand out in the tiling (see Fig. 4). 

Fig. 3. The apices of the gnomons of  the equiangular spiral 
In r / l n  z = O/(37r/5) can be seen as a subset of the intersections 
between the equiangular spirals In r / in T = ( 6 ) +  a ) / ( zr / 5 ) ; a • 
{0, 2zr/5, 4zr/5, 67r/5, 87r/5}. These intersections are the set of  
peaks in the skeletal delta function and from them a Penrose-type 
tiling is easily constructed. 
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8. Concluding and miscellaneous remarks 

In this note we have posed ourselves the question: 
how can one write down a relation that could play 
the role of the Poisson summation formula that under- 
lies translationally invariant crystallography and that 
might be used to glean some insight into quasi-crystal 
structure? The approach we have taken is neither 
entirely rigorous nor conventional. We have simply 
taken an experimental diffraction, selected and sub- 
sumed what stand out as its salient features in a 
skeletal sum of delta functions and written down the 
Fourier transform. The constraints of self-similarity, 
scaling, fivefold symmetry and independence of 
origin are automatic. 

The emergence of the logarithmic spiral as the 
signature of the Fourier transform is not surprising, 
and Thompson would have taken this as self-evident. 
In his words: 'In the growth of the shell, we can 
conceive of no simpler law than this, namely, that it 
shall widen and lengthen in the same unvarying pro- 
portions; and this simplest of laws is that which 
Nature tends to follow. The shell, like the creature 
within it, grows in size, but it does not change its 
shape; and the existence of this constant relativity of 
growth, or constant similarity of form, is the essence 
of the equiangular spiral.' The maintenance of shape 
or the constant change of curvature is indeed of the 
essence. 

What is new, however, is not the emergence of 
spirals in two dimensions or helices in three 
dimensions from the analysis, but the existence of 
additional self-similar oscillations, which, at fixed 
prescribed curvature dictated by the spiral, fill in 
'atomic' positions between the spirals. That seems to 
be as it should be. 

The infinite sum of (10) has some most interesting 
features. It is not a Fourier series, and it is condi- 
tionally convergent. As an experiment, for several 
values Irl of the argument we have computed a million 
terms of the sum and it has still not settled down, the 
two sine functions of (11) beating together over very 
long intervals. This is no cause for dismay. It would, 
after all, be impossible to compute a periodic delta 
function numerically. Applications would require the 
convolution of our skeletal delta function with a form 
factor that would result in rapid convergence exactly 
as for conventional crystallography. 

Perhaps the most interesting feature is that our 
Fourier-transform sum seems to have much in com- 
mon with the distribution of the zeros of the Riemann 
zeta function (Dyson, 1984), the greatest unsolved 
problem in pure mathematics! That indicates some- 
thing of the depth of the problem. That the zeta 
function ought to come into the scheme of things 
somehow is not surprising - the Poisson and related 
summation formulae are special cases of the Jacobi 
theta function. [Indeed the Bravais lattices can be 
enumerated systematically through an integral over 
all possible products and sums of products of any 
three of the four theta functions in different combina- 
tions that automatically preserve translational and 
rotational symmetries (Barnes, Hyde & Ninham, 
1990).] The theta-function transformations are them- 
selves just another way of writing the Riemann rela- 
tion connecting ~'(s) with ~'(1- s). Additionally, the 
properties of the zeta function are automatically con- 
nected to the theory of prime numbers. So one expects 
that the Rogers-Ramanujan relations [see Hardy 
(1940) and Appendix A] must eventually play a cen- 
tral role in the scheme of things for quasi-crystals. 
Indeed, the golden mean itself is the limit of the 
continued fraction F ( 1 ) / F ( y ) ,  

lim[F(1)/F(y)]--1-~ Y 5'/2+1 
y-. 1 y2 - ~ - r 

1 4 y3 
1 ÷ ~  (20) 

1 + . . .  

e ,2, 

tions, 

F(1) 

[the function F(y) is defined in Appendix B], where 
the continued fraction is the ratio of two theta func- 

- exp ( -x /5) (cos  -n'/10) 

Fig. 4. A Penrose-type tiling constructed from the skeletal delta 
function. 

x ~ [1 +2(cos 7r/5) exp (-4zr2m/5x) 
r r l . =  1 

+exp (-8zr2m/5x)]/(cos 37r/10) 

x ~ [1 +2(cos 37r/5) exp (-47r2m/5x) 
n a = l  

+exp(-8zr2m/5x)], y =exp ( -x ) ,  (21) 
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themselves the ratio of generating functions (Hardy, 
1940) that enumerate the ratio of the sums over all 
partitionings of the integers n into parts 5m + 1 and 
5 m + 4, to that which partitions the integers into parts 
5 m + 2  and 5m+3 .  We note the further identities of 
Ramanujan (Hardy, 1940) 

F ( 1 ) / F ( e x p  [ -2~- /5])  

= e x p  ( -2 r r / 5 ){ (5+  5'/2)12-(5 '/: + 1)/2} 

F(1) 
F( exp [-27r/ 51/2]) 

= exp (27r/5) 

5 '/2 5 ' /2+ 1] 
x 

1+{53/4[(5'/2--1)/215/2} '/5 2 

since they seem not to be widely known in crystallo- 
graphic literature. There are already 130 new versions 
of the Rogers-Ramanujan relations that exist due to 
the work of Andrews and Askey (Andrews, 1984; 
Andrews, Askey, Berndt, Ramanathan, & Rankin, 
1988) that suggest a host of possible new symmetries. 
In fact, the prediction of fivefold and other sym- 
metries had already been made by Askey more than 
a decade earlier on the basis of his work on q series. 

That the inverse of an equiangular spiral is identical 
to the original curve in some sense has long been 
known. As Thompson says, it was this that led Jacob 
Bernoulli, in imitation of Archimedes, to have the 
logarithmic spiral inscribed on his tomb. The equation 
of the equiangular spiral that occurs in our analysis 
quite naturally is r=exp[(lnr-l)O)Tr/5], and its 
multiplicative and additive properties are reminiscent 
of complex algebra with z=lzlexp(iOrr) and 
(In r-')/5 taking the role of the imaginary quantity i 
in some sense. It is here that the Rogers-Ramanujan 
relations provide some clues to the matter. For 
example, most partitions of the form ( 5 m + l )  and 
( 5 m + 4 )  can be written as products of the form 
(m-n5'/2)(rn+n5'/2), m and n integers, and other 
decompositions exist for the other partitions that 
occur. There is similarity with the complex numbers, 
with 5 '/2 or In r = In [ (5 ' /2+ 1)/2] playing the role of 
i. The geometry of quasi-crystal structure and arith- 
metic must thereby be linked. (This is suggestive of 
the possibility that the connections between areas, 
lengths and volumes are hidden in the identities. One 
can even speculate that the multidimensional rep- 
resentation groups of physics that underlie modern 
theories of particles, presently facing fundamental 
difficulties, are defective in omitting the space-filling 
characteristic infinite groups responsible for the 
quasi-crystal packing of space. Indeed it would not 
be surprising if the translational symmetries are 
degenerate cases. We have risked over-elaboration 
because number theory has much to offer that is not 
widely recognized.) 

Several additional observations may be made. 
(i) Whether or not our skeletal delta function, with 

geometric ratios for its spacing, underlies the real 
structure, wave and transport phenomena in such a 
medium must exhibit some extraordinary properties. 

(ii) In water, the maintenance of constant density 
is an easy matter, as is the accommodation of a cavity 
such as a hydrophobic molecule because of the large 
enthalpy-entropy compensation that accrues to its 
peculiar molecular structure allowing the breaking 
and rearrangement and sharing of bonds with ease. 
In quasi-crystals, since regular figures that satisfy the 
tetrahedral bonding requirements of constituent 
molecules cannot fill space, the large van der Waals 
self-energy associated with a defect or cavity must be 
accommodated by the imposition of a constant 
curvature of bonds, so that nucleation and growth 
proceed in a space-filling manner with the character- 
istics of spirals. 

(iii) Quasi-crystal structures have been known for 
a long time to occur in surfactant-water mesophases 
and rejected as inexplicable curiosities. Their 
existence, which will probably turn out to be 
ubiquitous, is not surprising. In the ternary or binary 
phase diagram of such solutions, they would be 
expected to occur between the lamellar and cubic 
phases. The closed topology of the lamellar phase 
must be disrupted to form the open bicontinuous 
network of the cubic phase, a matter easy to visualize 
through the formation of real equiangular helices that 
can then reform and lay down in a surfactant bilayer 
arrangement with cubic symmetry. 

One of us (BWN) acknowledges the hospitality of 
Professor Sten Andersson and both of us acknowl- 
edge his support and encouragement. 

APPENDIX A 

We give here a derivation of (7) and, to avoid 
unnecessary symbolism, use a particular form of 
g(x) [(5)], 

o o  

g(x)= ~ [exp ( - x e x p  m ) - e x p ( - e x p  m)]. 
? r l  = - o c ,  

(A-l )  

{In fact the analysis holds for 
o c  

g(x)= ~ [h(xexpm)-h(expm)] 
r n  ~ - - o c ,  

with only mild restrictions on the function h.} To 
exhibit the structure of g(x) we use the Mellin inver- 
sion formula 

c + i o o  

exp(-ax)=(1/2,n'i) ~ F(s)/(ax)~ds, 
c -  ioo 

0 < c = R e ( s ) ,  (A-2) 
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where the contour of  integration in the complex s 
p lane is the line specified parallel  to the imaginary  
axis. If we use this representat ion we have from (A- 1) 

oc. c + i cx'~ 

g(x)=(1/2-tri) ~. ~ F(s) 
m = - - o o  c - i ~  

x exp ( -ms ) ( x - '  - 1) ds, c = Re (s) > 0. 

(A-3) 

The summat ion  may be divided into two parts" 
summat ions  0.1 and 0"2 over non-negative and negative 
values of  rn respectively. For 0"1 the sum converges 
uni formly  and we can interchange orders of  integra- 
tion and summat ion  to get 

c + i o o  

o.,(x)=(l/2rri) ~ I ' ( s ) ( x -~ - l )d s ,  c > 0 .  
c - i oo  

( a -4 )  

For o2 we cannot interchange orders of  integration 
and summat ion  because the sum diverges on the 
contour. However, since the pole of l '(s) at s = 0 is 
cancel led by the zero of x - ' - I  at s = 0 ,  we can 
translate the contour to the left of  the origin in the s 
plane. On the new contour c' - 1  = Re (s) < 0 ,  the sum 
now converges and in terchanging the order of  integra- 
tion and summat ion  is possible. This yields 

C ' +  ioO 

0.2(x) = -(1/2~'i) 
C ' - -  ioO 

F( s)(x ~- 1 ) / [ 1 - e x p  ( - s ) ] ,  

H e n c e ,  

o -~  0"1+0- 2 

-1  < c ' < 0 .  (A-5) 

= ( 1 / 2 r r i ) ~ ( x - ' - l ) F ( s ) [ 1 - e x p ( - s ) ]  -1 ds, 

where the contour encircles the imaginary  axis in the 
positive (anticlockwise) direction. The integrand has 
poles at s =2nrri, n =0 ,  1, 2, 3 . . .  and evaluation of  
their residues gives (7). For the summat ion  (5) we 
can use the relation 

c +  ioc" 

cos ay=(1/27ri) 
c - - i o O  

F(s ) ( cos  7rs/2)/(ay) ~ ds, 

0 < c = R e ( s ) < l .  (A-6) 

The result, (4) and (I0), for the nth term of  the series 
follows from the observation that, if  z = i~, then 

II'(z)l=[Tr/(#sinh rq)] '/2 (A-7) 

and also, from the known result that, as 0 ,~oo ,  
arg (0,)  < 7r, 

r (  io,) = lrl exp ( i~o,), 

where 

q~,=O,,( lnO, ,-1)-rr/4-[(1/120,)+. . .]  (A-8) 

and the analysis proceeds exactly as above. 

APPENDIX B 
Rogers-Ramanujan relations, partitions and 

generating functions 

These relations, which are probably  central to an 
eventual solution to the quasi-crystal pattern, are 
discussed best by Hardy (1940). They occur in 
Baxter's (1982) famous solution to the statistical 
mechanics  of  hard hexagons.  We shall need a few 
definit ions and shall borrow some from Hardy. 

A partit ion of any number ,  n, is a division of n 
into any number  of possible integral parts. Thus, 
4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 .  The number  
of parti t ions of n is designated p(n). Thus p(1) = 1, 
p(4) = 5 and p(0) is defined as 1. The function F(x) 

F ( x ) = [ ( 1 - x ) ( 1 - x 2 ) ( 1 - x  ' ) . . .  ]-' (B-l) 

can be expanded  in powers of  x as 

oc 

F(x)= Z p(n)x". (B-2) 
n ~ 0  

F(x) is said to generate p(n) or enumerate  it. 
Other products can be written down that enumerate  

parti t ions of  n into parts restricted in various ways. 
For example,  it can be shown that 

F , ( x ) =  x"-~/[(1 - x)(1 - x2) . . .  (1 - xm)] 

enumerates  partitions of n into at most m parts 
without repetitions or sequences (sequences meaning  
parts differing by 1) or parts with minimal  difference 
two. If Ft(x) is expanded  as a power series, the 
coefficient, say pl(n), is the number  of ways of writing 
down such partitions of n. Thus, for n = 9, there are 
five parti t ions of this type: 9, 8+  1, 7 + 2 ,  6 + 3  and 
5 + 3 + 1. Also, the product 

[ ( 1  - x ) ( 1  - x ~ ) ( 1  - x l ' ) . . .  ] - 1  

X [ (  1 --  X 4 ) (  1 -- X 9 ) ( 1  --  x l 4 ) . . .  I - - t ,  

where the exponents  in the products inside the square 
brackets differ by five, enumerates  parti t ions of n into 
parts of  the form ( 5 m + l )  and ( 5 m + 4 ) .  For n = 9  
[(5m + 1) = (1, 6); (5m +4)  = (4, 9)], these partit ions 
are 9 , 6 +  1 + 1+ 1 , 4 + 4 +  1 , 4 +  1 + 1+ 1 + 1+ 1, 1 + 1 +  
1 + 1 + 1 + 1 + 1 + 1 + 1 .  There are five, the same 
number  of partit ions as of  the above type. 

The first of  the Roge r s -Ramanu jan  identities is 

X X 4 
1 + ~ +  ~-. . .  

( l - x )  ( 1 - x ) ( 1 - x  2) 
X m 2  

Jr + . . .  
( 1 - x ) ( 1 - x 2 ) . . . ( 1 - x  m) 

1 
= 

[ ( 1  - x ) ( 1  - x ~ ) ( 1  - x " ) . . .  ] 

1 
X [ ( l _ x 4 ) ( l _ x 9 ) ( l _ x , 4 ) . . . ] .  (B-31 
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The combinatoric statement of (B-3) is: the number 
of partitions of n into parts of minimal difference 
two is equal to the number of partitions of n into 
parts of the form (5m + 1) and (5m +4). The second 
Rogers-Ramanujan relation is 

X 2 X 6 

1 + ~1 _ - ] - - y ~ +  (1 _ x ) (1  _ x~ ) 

xm(ra+l) 

4 -  . . .  

~-.. .  
( 1 - x ) ( 1 - x 2 ) . . . ( 1 - x  ") 

1 
D 

[ ( 1  - x 2 ) ( 1  - X 7 ) ( 1  --  X ' 2 ) . . .  ] 

1 
x 

[ ( 1 - x3)( 1 - x8)( 1 - x 1 3 )  . . . ] "  
(B-4) 

Again, the exponents in the products inside the square 
brackets form arithmetic progressions with difference 
five. Its combinatoric statement is: the number of 
partitions of n into parts of minimal difference two, 
the least member of which is two, is equal to the 
number of partitions of n into the form (5m +2) and 
(5m +3). Thus, for n = 10, partitions of the first kind 
are 10, 8+2,  6 + 4 + 2 ,  7+3 while those of the second 
kind are 7+3,  8+2,  3 + 3 + 2 + 2 ,  2 + 2 + 2 + 2 + 2 .  
There are four of each type. It can be shown that the 
continued fraction 

of partitions. It seems likely that also implicit in these 
combinatoric identities are rules for construction of 
tilings. The infinite-product forms of the generating 
functions also indicate that a violation of such a 
packing rule will repeat in successively higher hier- 
archies as the packing proceeds. 

If the continued fraction in the product form is 
expanded out, one has 

F ( 1 ) / F ( y ) =  Y~ p,~(n)y" Y. p~(n)y", (B-6) 
n = 0  n = 0  

where p~, (n) and Pt3 (n) represent partitions of the two 
kinds, and necessarily 

lim p~(n)/p~(n)= 7-, 
n -..~ DO 

an apparently new result. The result (B-4) of the main 
text follows by recognizing that the infinite product 
form is the ratio of two theta functions, 

oo 

F ( 1 ) _  Y', ( - 1 ) " e x p [ - ( 5 n 2 + n ) x / 2 ]  
F(y)  . . . . .  

x Y~ (-1)"  e x p [ - ( 5 n 2 + 3 n ) x / 2  ; 
n = - o o  

y - exp ( -x ) ,  

then using the Jacobi-theta-function transformations. 

F(1) y 
- 1 +  2 

F(y) y 
1+ y3 

1 + ~  
1 + . . .  

= ( 1 - y 2 ) ( 1 - y 7 ) ' ' ' ( 1 - y 3 ) ( 1 - y s ) ' ' "  (B-5) 
(1-y)(1 _y6)... (1- y4)(1 _y9)..., 

where the ratio on the right-hand side is the ratio of 
(B-3) and (B-4). In the limit y ~  1, F ( y ) ~  7", succes- 
sive approximations to which are ratios of the succes- 
sive terms in the Fibonacci sequence. What is implied 
by (B-5) is the assertion that the ubiquitous occur- 
rence of 7" in quasi-crystals is a global property, the 
packing rules for construction implied by the com- 
binatoric identities for every n necessarily having to 
be satisfied and satisfied uniquely. This is because in 
the limit y --, 1 all terms in the ratio of the two generat- 
ing functions (B-3) and (B-4) have to be included, 
and that 

7"---- 

the sum of all partitions of all numbers n 
of the form (5m + 1) and (5m +4) 

the sum of all partitions of all numbers n 
of the form (5m +2) and (5m +3) 

or the equivalent statement in terms of the other kinds 
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Abstract 

An expression is obtained for the largest likely R factor 
for data that are normally distributed. For zero-mean data, 
the largest likely R factor is 21/2 and, for positive data 
(# >> o.), it is equal to 2o./(M.~1/2). These results are applied 
to fiber diffraction and other possible applications in crys- 
tallography are discussed. 

R factors are used in a variety of areas in crystallography 
as a measure of the similarity between two sets of parameters 
or data. Some applications are in assessing accuracies of 
structures, errors in scaling, effectiveness of derivatization 
and lack of phase closure in isomorphous replacement. 
Evaluating the significance of a particular-valued R factor 
is aided by comparison with the largest likely R factor; that 
which would be obtained if the two sets of parameters or 
data were unrelated or uncorrelated. The largest likely R 
factor depends on the statistical distribution of the data. 
Largest likely R factors have been derived for structures 
determined by crystallography (Wilson, 1950) and by fiber 
diffraction (Stubbs, 1989; Millane 1989a, b, 1990a, 1992). 
Largest likely R factors are derived here for data that are 
normally distributed. Applications to fiber diffraction are 
described and other possible applications are discussed. 

Consider two sets of data x and y (not necessarily posi- 
tive) that are compared by calculating the R factor 

R=~lx,-y,I/~lx, l=(~)/(Ixl), (1) 

where 6 = Ix - Yl and ( ) denotes the average. From Wilson 
(1950), the probability density for 6, Q(6), is given by 

oo 

Q ( 6 ) =  I P ( x ) P ( x + 6 ) d x  (2) 
- o o  

and G(x)  is defined by 

G(x)  = i x 'P(x ' )  dx'. (3) 
- o o  

Using these equations shows that 

(6) = 2[(x) - 2(G(x))] (4) 

0108-7673 / 92/040649-02506.00 

so that the largest likely R factor is given by 

g = [2(x) - 4(G(x))]/(Ix]). (5) 

Equation (5) is a general result for any distribution of x, 
and reduces to equation (6) of Wilson (1950) if x -> 0. 

If the random variables x and y are identically normally 
distributed with mean/~ and variance o.~, ,.e. 

P(x)  = (2~r)-*/2o. -* exp [ - (x- /~)2/2o.2] ,  (6) 

then i x ) = ~  and (ix[) is given by 

(Ixl) = ~ x[ P(x )+  P ( - x ) ]  dx (7) 
0 

so that 

(Ix]) = (2/Tr)I//o. exp ( -~2 /2o -2 )+~  erf(/~/2'/2o.), (8) 

where ef t ( . )  denotes the error function. Note that, for 
~/o .  --, oo, (Ixl) -+/z (as it must, since when p. >> o. most values 
of x will be positive) and that, for/~ = 0, (]x])= (2/~-)~/2o ". 
Substituting (6) into (3) shows that 

G(x)  = -(27r)-1/2o. exp [ - ( x  -/~)2/2o.2] 

+(l~ /2 ){ l+er f [ (x - l x ) /2 ' /2o . ] }  (9) 

and evaluating the mean gives 

(G(x)) = g / 2 -  o./(27rI/%. (lO) 

Substituting (10) into (5) gives 

R = 2o'/(It  '/2(Ixl)), (11) 

where (Ixl) is given by (8), which is the desired result. Note 
that, for zero-mean data, the largest likely R factor is 

R =2  I/2, for/~ =0. (12) 

It is instructive to examine the dependence of (ix I) on ~, 
shown as the solid line in Fig. 1. The approximation 

(Ixl)--- ~ (13) 

is the first term in the asymptotic expansion for (ixl) as 
~ / o . - ~ ,  and is quite accurate for p,/o.~> 1.5 (broken line 
in Fig. 1). For small ~, the power-series expansions for the 
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